
UML Behavioral Refactoring for the
Specification of Complex Software Systems

M.T. Chitra1,2 and Sherly Elizabeth2

1University of Kerala
2Indian Institute of Information Technology and Management - Kerala

{chitra,sherly}@iiitmk.ac.in

Abstract. Behavioral models play a prominent role in specifying soft-
ware systems by facilitating the abstract behavior views and analyzing
the elementary aspects of a system. The sequence diagram, one of the
key behavioral diagrams in UML, provides intuitive ways to capture re-
quirements and scenarios as a sequence of events. The paper proposes
a generic framework for effective code generation from UML models.
The proposed framework acts as an interexchange format that helps to
combine the structural and behavioral constraints of the system objects
associated thereby facilitating consistent source code generation. Model
Refactoring contributes to improve the software quality and productiv-
ity thus mitigating flaws in the system during the design phase itself.
The case study presents the refactoring of online simulation of a mill
optimization problem in a thermal power plant system.

Keywords: Behavioral diagrams, Model Refactoring.

1 Introduction

The increasing complexity of the software systems demands the advent of novel
effective development approaches that can overcome the major drawbacks of the
existing development technologies. Model Driven Engineering (MDE), fostered
by Object Management Group (OMG) helps reducing the development costs
of complex software systems through the use of technologies like Model Driven
Architecture (MDA) that supports rigorous analysis of software models [2, 3]. In
MDA, models are the primary entities for entitling the system at different levels
of abstraction. Models can help to detect inconsistencies or incompleteness in
requirement model by evaluating the simulation of the scenarios.

The Unified Modeling Language (UML) is one of the prevalent languages used
for modeling complex safety-intensive software systems. It provides a collection
of modeling notations for design specifications to build models that describe the
different views on a system during various stages such as requirements analy-
sis and design artifacts of software systems. UML Sequence diagrams are now

51 Research in Computing Science 103 (2015)pp. 51–68; rec. 2015-06-03; acc. 2015-06-20

becoming familiar to represent the behavioral specifications of the complex sys-
tems. Sequence diagrams emphasize on modeling the interactions between the
collaborating objects participating in the interactions as a time-ordered set of
messages [1, 3].

However, UML diagrams fail to specify the semantics in representing the
entire information to determine the complete system behavior. The lack of formal
semantic specification for UML makes it difficult to analyze the consistency
notion in these diagrams. Hence, several transformation approaches are being
adopted for analyzing and specifying the consistency of behavioral models which
transform the UML models into some semantic domain where the consistency
constraints can be represented and validated. The formal specification languages
like OCL, TOCL, Z, etc. helps to add additional information to the diagram
thereby ensuring the completeness of the model.

OCL is a declarative, side-effect free, formal specification language used along
with UML diagrams for specifying the object constraints and queries on the
UML models. It precisely defines the well-formedness rules for UML as well as
the OMG-related metamodels. OCL is mainly used to specify the invariants of
objects as well as the pre and post conditions of the operations [6].

Representing the dynamic behavior of complex time-safety critical systems
is a rigorous task as well as a tough research problem to be taken care of. It
involves the careful analysis of the semantic aspects with respect to the system
constraints. Moreover, there are no model-based techniques or tools available
so far for analyzing such temporal properties in UML behavioral diagrams, es-
pecially in sequence diagrams. Existing approaches use model transformation
techniques that transform the UML models to some other language that sup-
ports automated analysis, which are also complex and erroneous.

The Temporal OCL (TOCL) finds its significance in this context. The time
and safety related constraints as well as the behavioral specifications, which
are hard to express using OCL can be specified using TOCL, a temporal logic
extension of OCL. In this paper, we evaluate the impact of OCL and TOCL along
with UML behavioral diagrams to completely represent the system behavior
especially in safety-critical software environments.

Towards this goal, we provide a refactoring approach to embed the static
as well as the temporal constraints involved in the system behavior through a
development chain. It constitutes the generation of the behavioral design model
using UML sequence diagrams, specification of the constraints using OCL and
TOCL, generation of code from the behavioral models by applying the refactor-
ing approach and the execution and analysis of generated code. This approach
helps in predicting the system behavior at modeling level itself by comparing the
simulation results with real time results. This consequently allows the scientists
or the researchers to work exclusively at modeling level in order to obtain the
optimized system models. They can analyze the scenario specifications directly
from the execution model and can add changes accordingly.

The work focuses on interaction modeling, showcasing the dynamic aspects
of the interaction between the participating objects. The dynamic modeling

52

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

includes visual specification of the system functionalities in detail, where the
functionalities are realized through the message passing between the objects
participating in the interaction. The paper discusses about the development of a
framework which shows the automated refactoring of UML interaction diagrams,
especially the sequence diagram designs, to improve the understandability and
maintainability of the design for the efficient source code generation process.

This paper is an extended work and its main new contribution is that the
framework has been enhanced with the potential of including a set of safety
and temporal constraints in addition to the static constraints of the system [16].
The work proposes a novel approach that yields an interexchange framework to
include the complex system behaviors into UML Sequence diagram design as
constraints, thereby enriching the model elements with the necessary details of
the system without affecting its external behavior.

Incompleteness in the generated source code may often arise due to the ab-
sence or failure in representing all possible information regarding the objects
that participate in that system. The constraint specification languages play an
intelligent role here, by removing this inconsistency in the model design which
in turn reflects in the completeness of the generated source code. The proposed
framework paves the way for improving the software code quality and produc-
tivity fulfilling all the specified system requirements during the code generation
process.

The main contributions of this work can be summarized as follows:

– The behavioral refactoring approach in sequence diagram designs is pro-
posed, which paves a way to incorporate static, temporal and safety related
constraints into the design and derive a refactored interexchange model from
the existing SD specification.

– To provide a generic behavioral pattern for implementing the proposed refac-
toring methodology in UML models that provides a space for consistent code
generation of software systems.

The remainder of this paper is structured as follows: Section 2 gives the
related works and identifies and explains the different refactoring activities. Sec-
tion 3 describes the proposed refactoring approach. Section 4 presents the im-
plementation of the approach through a case study discussion. Finally, Section 5
shows the results and discussions part of the case study and Section 6 concludes.

1.1 Background

The software refactoring is an emerging area where a lot of researches are being
carried out on exploring the ways to address refactoring in a consistent manner.
Refactoring revolutionizes the design by applying some effective process for im-
proving code quality. The term refactoring was instigated in 1992 by William F.
Opdyke in his research work in the context of object-oriented software to support
software evolution and reuse. He defined refactoring as “behavior preserving pro-
gram restructurings or transformations containing particular preconditions that

53

UML Behavioral Refactoring for the Specification of Complex Software Systems

Research in Computing Science 103 (2015)

must be verified before the transformation can be applied in order to make the
design of a program clearer and to make it easier to add new features” [7, 8].

Refactorings can also be applied to reduce or eliminate redundant parts of
program codes [7]. Martin Fowler defined the process of refactoring as “a change
made to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behavior”. He proposed the
refactoring catalog which focuses on manual refactoring, demonstrated with ex-
amples regarding the principles of refactoring, the useful ways to identify and
find the associated low-level refactoring(s) that helps fixing a code problem in a
controlled and efficient manner [9].

Mens et al., in their review on model-driven refactoring discussed on the latest
approaches in model refactoring and also the various challenges encountered
while applying refactoring on model level [13]. Mohamed et al. discussed on
their the existing model refactoring approaces based on feature based model-
driven taxonomy [14]. Most of the investigations focus on UML class diagrams,
for applying model refactorings [10]. There are only a few approaches that focus
refactoring behavioral diagrams and prove their behavior preservation properties
in a standard way. G. Sunye et al. were the first to present a set of refactoring(s),
particularly on UML class models and state machine models, and explained how
they can be modeled so as to preserve the behavior of a UML model. They showed
that refactorings can be defined for UML in such a way that their behavior-
preserving properties are protected, based on OCL constraints defined at the
metamodeling level [11].

Alessandro Folli and Tom Mens used Algebraic Graph Grammar tool to
support refactoring on the UML designs. They focus on class models and state
machine models and define a metamodel similar to the UML meta model as a
type graph. The limitation of this work is that this type graph can represent only
the simplest version of the UML metamodel [17]. France et al. described a meta
modeling approach to pattern-based model refactoring in which refactoring(s)
are used to introduce a new design pattern instance to the model [18].

Several formalisms have been suggested to examine model refactoring(s).
Most of these propose exhibiting model refactoring in a declarative way. Graph
transformation theory was used in several works for describing model refactoring
and formal properties have been used to review these refactoring(s) [15].

Most of the refactoring approaches focused on code-level refactoring and only
a limited works address the model refactoring approaches and especially with
class diagrams [13]. But while taking care of the behavior preservation of design
models, we need to rely on behavioral models and the constraints associated
with them. Only a few works are available in the literature with respect to
refactoring of behavioral models. None of the existing approaches can be used
to verify operation-based model refactoring that involves changes to operation
specification. The core idea presented in this paper focuses on facilitating the
integration of system behavioral properties throughout the time point at different
abstraction levels one wants to guarantee for the safe or normal execution of the
system.

54

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

2 The Conceptual Approach

2.1 Refactoring the Behavioral Specifications

Model transformation is the process of modifying the source model to produce
the target model. Refactoring is a model transformation approach which restruc-
tures the system by altering its internal behavior without affecting the external
behavior [1, 2]. Modifying the UML model by enriching with the necessary con-
straints will significantly increase the quality of the design as well as the gener-
ated source code from it. The process of refactoring enables the model to adapt
to future extensions.

By definition, refactoring should ensure behavior-preserving transformations
of an application. It means that the external behavior of the model before and
after the refactoring must remain the same. The major problem faced by design-
ers is to measure the actual impact of modifications on the various design views,
as well as on the implementation code which serves as a valid proof to prove the
correctness of system and hence showing the behavior preservation property of
refactoring approach. Another crucial task here is identifying or determining the
exact element to which the refactoring has to be applied.

We are applying the refactoring approach in UML sequence diagrams, which
primarily shows the behavioral interactions between the objects participating
in the system. Such behavioral transformations need extra care as their change
raises some difficulties.

In the proposed work, the model refactoring is applied to the lifeline model
element of the sequence diagram design for ensuring the correctness of the sys-
tem. Since the primary focus of the sequence diagram is to specify the interaction
between the collaborating objects, represented as lifelines, it has been chosen as
the focal point for refactoring.

We also need to justify why the behavior preservation condition holds for
these model transformations:

– Adding the constraint schema into the lifeline model element does not make
any modification to the behavior of that element. Rather, we are only giving
space to group all the data related to that model element into a common
point in order to improve the understandability.

The overall architecture of the refactoring process proposed in this work is shown
in Figure 1.

The XML Metadata Interchange (XMI) is OMG standard interchange for-
mat used in UML models for exchanging metadata information via XML. It
includes information about elements in a model and their relationships. The
transformation of the models into XMI is indeed a breakthrough in facilitating
interoperability across various tools and platforms [5]. The XMI generated would
then be fed into an XMI parser to retrieve the meta model information which in-
turn is used for the generation of source code. Besides, OCL and TemporalOCL
also supplements more precise information specification in the UML behavioral
model. The work is an attempt to allow the specification of inter-object scenarios
for object-oriented system models in a succinct expressive manner.

55

UML Behavioral Refactoring for the Specification of Complex Software Systems

Research in Computing Science 103 (2015)

Fig. 1. Architecture of the Refactoring process

2.2 Generation of the OCL-TOCL Framework

The work focuses on developing X-CodeFrame, an XML code framework for rep-
resenting OCL and TOCL constraints into UML behavioral models, especially
the Sequence diagram model thereby facilitating automatic behavioral code gen-
eration. This approach helps in simplifying the transformation of the static, tem-
poral and safety-related constraints of the system, thereby smoothening the code
generation process.

The constraints that are typically hard to express in OCL, which entitles the
temporal and safety related issues of the system are specified using the temporal
OCL (TOCL). The static as well as the temporal constraints specified for a
system using OCL and TOCL are parsed for framing the constrained elements in
order to generate the framework as per the defined schema [schema No-Fig.]. The
extracted constraints are then set appropriately into the OCL-TOCL frameworks
by matching the context < classname > attribute.

An XML Schema Definition (XSD) typically called an XML schema, is the
de facto standard for describing XML documents, controlled by the World Wide
Web Consortium (W3C). The XML schema formally defines the XML document

56

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

structure accompanying the rules for data content and semantics. The OCL
schema proposed here defines an XSD file that provides the design pattern of
how the constraints will set within the XMI file obtained after the refactoring
process.

The OCL-TOCL schema is the backbone of the proposed UML refactor-
ing process. Based on the defined schema rules, the constraints are embedded
into the XMI file of the UML model thereby refactoring it for quality source
code generation. The basic types that we are considering for the schema frame-
work generation are the invariants, methods, pre-condition and post-condition
operations.

The schema defines the specification rules for framing the constraints appro-
priately associated with each of the objects participating in the system interac-
tion. For each class defined in the constraint files (OCL/TOCL) there will be
an < extendedConstraints > tag generated which is the root element for the
constraint construction framework. All the constraints that belong to a partic-
ular class will come to an individual < extendedConstraints > tag created for
that class. It includes the class name details using the attribute context and also
stores the file type within the type attribute.

Fig. 2. Extended constraints

The schema template structure for adding invariants into the OCL-TOCL
framework is as follows. The < MethodDetails > tag is the main tag element
inside the < extendedConstraints > tag which represents the whole constraint
block within a particular class based on the nature of the constraints. The
< body > tag element sets the constraints within the < MethodDetails > appro-
priately. The < constraints > tag is the complex type tag set that helps in iden-
tifying all the constraint expressions, operations etc in the < MethodDetails >
and include these entities as individual elements under the < constraint >
tag within it. The schema template structure for generation of an operation or
method is as shown in Fig. 3.

For the execution of a method in any complex system generally includes a
precondition which must be considered for a safe system functioning, a body
part which includes the actual functionality to be performed and a postcondi-
tion operation in which the status of the generated output is checked for fur-
ther processing of the system. Hence the syntax for generation of the method
schema also include these as the key factors while framing data with respect to
a method. The < precondition > tag element helps in representing all those
conditions for checking the pre-conditions that should satisfy or perform if any
before performing the actual method body. The < body > tag include the ex-

57

UML Behavioral Refactoring for the Specification of Complex Software Systems

Research in Computing Science 103 (2015)

Fig. 3. Schema template structure for generation of an operation or method

pression and operations that have to be taken place within that method and
the < postcondition > tag represents all those constraints that must have to be
executed after the method execution.

The generation of java class files corresponding to the OCL schema is done
using JAXB (Java Architecture for Xml Binding), which directly binds the
XSD/XML element to particular fields of java classes and vice versa using the
properties marshalling and unmarshalling.

The OCL files containing the static constraints and the TOCL files which
contain the temporal and safety related constraints for the system are parsed.
The constraints are parsed and extracted in a way that helps in fixing the con-
text to which the respective specification refers to in the generated OCL-TOCL
frameworks. The constraints extracted are set with the associated java objects
of the java classes created using JAXB.

The generated OCL TOCL frameworks are then injected into the XMI of the
Sequence diagram model based on the lifelines associated with it.

The OCL -TOCL framework generation process is shown as Algorithm 1.

Algorithm 2 explains the process of filling the constraint objects with appro-
priate constraint body tag elements.

58

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

Algorithm 1. X-CodeFrame Generation

Require: OCL file for sd ’s (OCLsd) and also TOCL file for sd ’s (TOCLsd), if any.
Ensure: XMLframework of the constraints w.r.t. different contexts referred.
1: begin
2: Initialize the ocl-tocl parser with the input
3: Read OCL / TOCL file
4: for each line in file do do
5: segregate the contents against the context
6: for each new content in context do do
7: create an object of ExtendedContraints with type OCL/TOCL
8: store the object against context
9: parse the context string

10: extract the details context data elements like class name, constraint
type,constraint name, return type if any

11: end for
12: for each new constraint within a context do
13: get the ExtendedConstraints object against a context
14: add an object of MethodDetails under ExtendedConstraints
15: invoke populateConstraintBody()
16: end for
17: iterate the list of ExtendedConstraints of all context
18: marshall the objects to the XML content
19: store it against the context
20: end for

2.3 Applying Refactoring to the Model: An Algorithmic approach

Identification and extraction of the exact information that represent function-
alities or behavior from the UML models are crucial. This work is proposing a
automated refactoring approach for the scenario based UML designs, especially,
the UML sequence diagrams, to model the complex system behaviors, henceforth
building the behavioral scenarios for individual subcomponents of the system.
Refactoring supports a highly dynamic software lifecycle by improving the inter-
nal structure of a piece of code block without altering its external behavior. The
operation specifications which cannot be directly included in the UML designs
are expressed using the static as well as the temporal constraint languages.

Given a model M which consists of model elements which are associated with
it to perform the behavioral aspects as per the system requirement specification
based on the metamodelling standards (IM). Applying model refactoring in the
model MR = (pre, TR), where pre is the precondition or set of rules that model
must preserve and satisfy, and TR is the model transformation that is applied
to the model.

The Algorithm 3 describes the whole process taken place during the UML
refactoring approach.

We illustrate how the refactoring process will happen through the simula-
tion of the mathematical modeling process for optimizing the time factor in a
pulverizing process in a thermal power plant system.

59

UML Behavioral Refactoring for the Specification of Complex Software Systems

Research in Computing Science 103 (2015)

Algorithm 2. The populateConstraintBody()

Require: ExtendedConstraints object for a context
Ensure: Modified ExtendedConstraints object with constraint body
1: begin
2: if Precondition then
3: create an object of ExtendedConstraints.MethodDetails.Preconditions
4: create Constraints object within Preconditions
5: set the expression string to the Precondition constraints
6: else if Postcondition then
7: create an object of ExtendedConstraints.MethodDetails.Preconditions
8: create Constraints object within Preconditions
9: set the expression string to the Precondition constraints

10: else if Body or inv then
11: create an object of ExtendedConstraints.MethodDetails.Preconditions
12: create Constraints object within Preconditions
13: set the expression string to the Precondition constraints
14: end if
15: return the modified object of ExtendedConstraints
16: end

Algorithm 3. The Automated UML Refactoring Process

Require: ExtendedConstraints object for a context
Ensure: Modified ExtendedConstraints object with constraint body
1: begin
2: if Precondition then
3: create an object of ExtendedConstraints.MethodDetails.Preconditions
4: create Constraints object within Preconditions
5: set the expression string to the Precondition constraints
6: else if Postcondition then
7: create an object of ExtendedConstraints.MethodDetails.Preconditions
8: create Constraints object within Preconditions
9: set the expression string to the Precondition constraints

10: else if Body or inv then
11: create an object of ExtendedConstraints.MethodDetails.Preconditions
12: create Constraints object within Preconditions
13: set the expression string to the Precondition constraints
14: end if
15: return the modified object of ExtendedConstraints
16: end

3 Case Study : The Coal Pulveriser Optimization
Problem

We demonstrate the capability of the proposed refactoring approach though
the online coal pulverizing mill optimization problem [16]. In this system, we
have considered both the static as well as the behavioral properties involved in
the pulverizing process to demonstrate the applicability of the approach. The

60

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

main function of the pulverizing mill is to grind and dry the moisturized raw
coal supplied to it from the coal storages. The two main classes involved in the
pulverisation process in a coal mill are the CoalStorage and the Pulveriser.

The proposed system behavior is modeled using the UML sequence diagram.
The safety and time related constraints as well as the static constraints are ex-
pressed as TOCL and OCL files respectively. The model is exported as an XMI
file and is parsed appropriately for extracting the relevant tag data elements for
the code generation process. The OCL as well as the TOCL files are simultane-
ously parsed to extract the relevant details into the corresponding tag elements
in the XMI file using the proposed X-CodeFrame framework.

The UML together with the OCL and TOCL helps in representing the facts
that belong to the behavioral level completeness of the system. The constraints
of the pulveriser which cannot be typified visually are represented using OCL
and TOCL files. The pre and post conditions to be satisfied and the invariants
of the system model specified using the OCL file are embedded to the design
model by the applying the refactoring approach proposed in the work in order
to accomplish the model consistency. The pulveriser optimization process simu-
lation is performed by transforming the mathematical system model using the
Object Constraint Language. Along with the sequence diagram model informa-
tion the temporal as well as the static constraints related with the CoalStorage
and the Pulveriser sub systems are also supplied to the model in order to enrich
the design data for the code generation process.

3.1 Simulating the Online Coal Pulverisation Process Optimization

The following mathematical model explains the coal pulverisation process [19,
20]. The model is converted to discrete time form for the purpose of online im-
plementation. Figure 2 illustrates the overall online pulverising mill optimization
process. The mill model variables are monitored dynamically in real time. The
unknown parameters in the equations are estimated using evolutionary compu-
tation technique (Genetic Algorithms) and system simulation techniques based
on the on-site measurement data. The normal pulverisation process is described
mathematically using the following equations:

61

UML Behavioral Refactoring for the Specification of Complex Software Systems

Research in Computing Science 103 (2015)

Fig. 4. Online mill performance simulation

The main input variables supplied to the pulveriser system include raw coal
flow into the pulveriser, primary air differential pressure and primary air inlet
temperature. The output variables include pulveriser differential pressure, outlet
temperature and mil current. The online coal mill optimization process is spec-
ified as a constraint file as shown below. During the refactoring process these
equations are affixed under the < body > tag elements section of the Pulveris-
ing() method call.

The values of the constant co-efficients are obtained using the Genetic Al-
gorithm. The code generation helps the researchers and experienced engineers
in analyzing and comparing the simulation results of the online mill model with
the real plant data set values and thereby improving the mill performance.

3.2 OCL Constraints in the Coal Pulverising Process

This section presents the approach by specifying the temporal properties associ-
ated with the pulverisation process in a coal-fired thermal power plant system.
The structural constraints that must necessarily hold true or checked during the
pulverization process are represented as invariants using the OCL file.

Mc = ((Wc - (k15 * self.Mc)) * T)

Mpf = (((k15 * self.Mc) - (self.Wpf)) * T)

DPmpd = (((k11 * self.Mpf + (k12 * self.Mc) - (k13 * self.DPmpd))) * T)

62

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

Tout = (((((k1 * self.Tin) + k2) * self.Wair) - (k3 * self.Wc) -

(((k4 * self.Tout) + k5) * (self.Wair + self.Wc)) +

k14 * ((k6 * self.Mpf) + (k7 * self.Mc) + k8) +

((k17 * self.Tout))) * T) + self.Tout

P = (k6 * self.Mpf) + (k7 * self.Mc) + k8

DPmill = k9 * self.DPpa

Wpf = k16 * self.DPpa + self.Mpf

The following are a few constraints associated with the two classes CoalStor-
age and PowerPlant in the thermal power plant system:

context CoalStorage inv cosize:CoalSize=20

context CoalStorage inv hval: HGI=55

The invariants that must hold true for the CoalStorage class are:

context CoalStorage inv cosize:CoalSize=20

context CoalStorage inv hval: HGI=55

The typical invariants that must hold for the Pulveriser class are as shown
below.

context Pulveriser inv: Wc $<=$ 45

context Pulveriser inv: Wair $<=$ 75

context Pulveriser inv: Tin $<=$ 300

context Pulveriser inv: DPpa $<=$ 180

context Pulveriser inv: outlet temperature $<=$100

context Pulveriser inv: DPmill $<=$ 500

context Pulveriser inv: P $<=$ 60

context Pulveriser inv: if a.Stage = 3 then

Speed=54 else Speed=52 endif

context Pulveriser inv:if a.Stage = 3

then self.Type = ’HP803PXBowl’

else self.Type = ’XRP763BowlRoller’endif

context Pulveriser inv:if CoalHGI = 55 and CoalMoisture = 0.1

and CoalFineness = 0.7 then

if a.Stage = 3 then self.Capacity2 = 39.9 else

self.Capacity2 =33.8

endif

else self.Capacity2 $ <>$ 0

endif

3.3 Safety and Temporal Constraints in the Coal Pulverizing
Process

The temporal constraints involved in the coal milling process include the safety
and time related aspects of all the classes or objects participating in that process.
For the CoalStorage class the main temporal constraints involved are:

63

UML Behavioral Refactoring for the Specification of Complex Software Systems

Research in Computing Science 103 (2015)

1. Failure in the level of the minimum storage level or maximum storage level
occurred; that means the coal level exceeds the limit of the maximum storage
level or has reached the minimum level.

For the Pulverizer class the main temporal constraints to be considered are:

1. The system is in initialization mode until all the physical sub components or
units inside the pulveriser are in ready mode and all the external attributes
supplied to the system satisfie the normal range values for proper functioning
of it or a failure in the level of coal quantity supplied to the pulverizing mill
has been identified.

2. The system is in the normal mode, which is the standard operating mode
when the program tries to maintain the raw coal level in the pulveriser be-
tween the level of values with which all physical units are operating correctly.

The below listed are a few safety and temporal constraints associated with
the coal pulverisation process.

When the Pulveriser system is in the initialization mode, it remains in this
mode until all physical units are ready or a failure in the pulverising mill has
occurred.

Instantly the program recognizes a failure in the Coal Mill system until it
goes into the rescue mode.

Failure of any of the physical or measured units except the coal mill puts the
program in to degrade mode.

When the Coal Mill system is in the initialization mode and a failure of the
coal mill is detected, it puts the program into emergency stop.

64

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

4 Results and Discussions

The UML SD design model for the coal pulverization process is shown in Fig-
ure 5:

Fig. 5. UML Sequence diagrams

The OCL framework generated for the OCL constraints given below is as
shown in Figure 6. Here the CoalStorage class has two constraints associated
with it, which are converted into two < MethodDetails > elements under the
< ExtendedConstraints > object tag.

The OCL-TOCL framework generated for the mill optimization process is as
follows.

The framework generated for the preconditions and postconditions specified
as OCLconstraints that must satisfy for the Pulveriser object is:

The code framework generated for invariants of the Pulveriser subsystem is:

5 Conclusion

This paper concentrates on providing a generic framework for refactoring the
specification of complex systems modeled using UML2.0 sequence diagrams. It
focuses on combining the structural and the behavioral constraints, thereby of-
fering a path for consistent and quality source code generation. The system has
been formally modeled using the OCL/TOCL language to provide explicit and
precise system information to the design. A generic template framework has
been built based on the constraints as well as the UML sequence metadata of

65

UML Behavioral Refactoring for the Specification of Complex Software Systems

Research in Computing Science 103 (2015)

Fig. 6. The OCL framework generated for the OCL constraints

Fig. 7. The XCodeFrame generated for the online coal mill optimization process for
the Pulveriser subsystem

the system by using refactoring approach. The proposed method facilitates the
mathematical verification of pulveriser system in a thermal power plant. The
representation of extra information as static as well as temporal constraints at-
tached to certain locations of the objects lifelines in the sequence diagram allows
the identification of gaps and contradictory specifications during the source code
generation process.

6 Acknowledgments

The authors would like to thank the Control and Instrumentation Group, CDAC,
Thiruvanathapuram for providing the raw plant data of pulverising mill which is
used for modeling and validating the system. This work is supported by SPEED-
IT programme of Kerala State IT-Mission under Govt.of Kerala.

66

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

Fig. 8. The preconditions and postconditions specified as OCLconstraints that must
satisfy for the Pulveriser object

Fig. 9. The code framework generated for invariants of the Pulveriser subsystem

67

UML Behavioral Refactoring for the Specification of Complex Software Systems

Research in Computing Science 103 (2015)

References

1. Unified Modelling Language, http://www.uml.org/.
2. Object Management OMG. Unified Modeling Language Specification 2.0:

Infrastructure. Technical Report ptc/03-09-15, OMG (2003).
3. G. Booch, J. Rambaugh, and I. Jacobson, The Unified Modeling Language

User Guide, Addison-Wesley (1999).
4. Model Driven Architecture, White Paper, Object Management Group OMG,

May (2014).
5. XML Metadata Interchange, www.omg.org/spec/XMI/
6. OMG, Object Constraint Language (OCL) Specification, version 2.0,2006

http://www.omg.org/spec/OCL/2.0/
7. Opdyke, W.F.: Refactoring: A Program Restructuring Aid in Designing

Object-Oriented Application Frameworks, PhD thesis. Univ. of Illinois
(1992).

8. Roberts, D.: Practical Analysis for Refactoring. PhD thesis. Univ. of Illinois
(1999).

9. Fowler, Martin: Refactoring: Improving The Design of Existing Code. Pear-
son Education India (1999).

10. Astels, Dave: Refactoring with UML. In: 3rd International Conference on
eXtreme Programming and Flexible Processes in Software Engineering, 67–
70 (2002).

11. Suny, G., Pollet, D., Le Traon, Y., Jzquel, J. M.: Refactoring UML models. In
International Conference on Unified Modeling Language UML -2001. LNCS
2185. Springer Berlin Heidelberg, 134–148 (2001).

12. Maddeh, M., Romdhani, M., Ghdira, K.: Classification of Model Refactoring
Approaches. Journal of Object Technology, 8.6, 143–13958 (2009)

13. Mens, Tom, Tourw, Tom: A survey of software refactoring. Software Engi-
neering, IEEE Transactions on 30.2, 126–139 (2004).

14. Mens, Tom, Taentzer, Gabriele, Mller, D.: Model-driven Software Refactor-
ing. Model-Driven Software Development: Integrating Quality Assurance,
170–203 (2008).

15. Mens, Tom, Taentzer,Gabriele, Mller, Dirk.: Challenges in model refactoring.
In: 1st Workshop on Refactoring Tools, University of Berlin. Vol. 98 (2007).

16. Chitra M. T., Elizabeth Sherly.: Refactoring sequence diagrams for code
generation in UML models. In IEEE Int. Conf. on Advances in Computing,
Communications and Informatics ICACCI, 2014, 208–212 (2014).

17. Folli, Alessandro, Mens, Tom.: Refactoring of UML models using AGG. Elec-
tronic Communications of the EASST (2008).

18. France, R., Chosh, S., Song, E., Kim, D. K.: A metamodeling approach to
pattern-based model refactoring. Software, IEEE, 20(5), 52–58 (2003).

19. Y. G. Zhang, Q. H. Wu, J. Wang, G. Oluwande D. Matts, and X.Zhou.:
Coal Mill Modeling by Machine Learning Based on Onsite Measurements,
Energy Convers. IEEE Trans., 17(4), 549–555 (2002).

20. J. Wei, J. Wang and Q. H. Wu.: Development of a Multisegment Coal Mill
Model Using an Evolutionary Computation Technique, IEEE Trans.Energy
Convers., 22(3), 718–727 (2007).

68

M.T. Chitra, Sherly Elizabeth

Research in Computing Science 103 (2015)

